Reinforcement learning
A.A. 2025/2026
Obiettivi formativi
This course introduces the theoretical and algorithmic foundations of Reinforcement Learning, the subfield of Machine Learning studying adaptive agents that take actions and interact with an unknown environment. Reinforcement learning is a powerful paradigm for the study of autonomous AI systems, and has been applied to a wide range of tasks, including self-driving cars, game playing, customer management, and healthcare.
Risultati apprendimento attesi
Upon completion of the course students will be able to:
- formalize problems in terms of Markov Decision Processes,
- understand basic methods of strategic exploration,
- understand algorithms for direct policy optimization,
- run experiments in simulated environments.
These objectives are measured via a combination of two components: the project report and the oral discussion. The final grade is formed by assessing the project report, and then using the oral discussion for fine tuning.
- formalize problems in terms of Markov Decision Processes,
- understand basic methods of strategic exploration,
- understand algorithms for direct policy optimization,
- run experiments in simulated environments.
These objectives are measured via a combination of two components: the project report and the oral discussion. The final grade is formed by assessing the project report, and then using the oral discussion for fine tuning.
Periodo: Secondo quadrimestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Secondo quadrimestre
INF/01 - INFORMATICA - CFU: 6
Lezioni: 40 ore
Docenti:
Cesa Bianchi Nicolo' Antonio, Ferrara Alfio
Turni:
Docente/i
Ricevimento:
Su appuntamento. Il colloquio si svolgerà online dopo aver contattato il docente per posta elettronica.
Online. In caso di appuntamento di persona, Dipartimento di Informatica, via Celoria 18 Milano, Stanza 7012 (7 piano)