Protein engineering and molecular enzymology
A.A. 2025/2026
Obiettivi formativi
Protein engineering is a novel and dynamic field, which leads to production of modified proteins used to elucidate biological processes, structure-function relations of proteins, for the development of bioactive compounds and applications of proteins in all domains of biotechnologies. This class mainly aims to provide (i) the theoretical bases for the understanding and design of protein engineering approaches exploiting structural and functional information on the target proteins and (ii) the tools to carry out protein engineering and analyzing engineered proteins.
The course is ideally linked to those dealing with metabolic engineering, structural biology, bioinformatics, nanotechnologies and molecular parasitology.
The course is ideally linked to those dealing with metabolic engineering, structural biology, bioinformatics, nanotechnologies and molecular parasitology.
Risultati apprendimento attesi
At the end of this class , the students are expected to:
(1) have refreshed basic concepts in protein structure-function relations and enzyme catalysis;
(2) have acquired an advanced understanding of theoretical aspects of enzyme catalysis and of the experimental approaches used to correlate structure-function relations with an emphasis on the use of this knowledge to engineer novel enzyme forms in the context of fundamental science projects and biotechnological applications;
(3) have understood the rational of current protein engineering approaches and methods;
(4) have acquired the ability to correlate the theoretical and experimental connections among the disciplines involved and their relevance to biotechnological developments;
(5) have acquired the technical vocabulary needed to critically read research articles and to present them in oral and written forms.
(1) have refreshed basic concepts in protein structure-function relations and enzyme catalysis;
(2) have acquired an advanced understanding of theoretical aspects of enzyme catalysis and of the experimental approaches used to correlate structure-function relations with an emphasis on the use of this knowledge to engineer novel enzyme forms in the context of fundamental science projects and biotechnological applications;
(3) have understood the rational of current protein engineering approaches and methods;
(4) have acquired the ability to correlate the theoretical and experimental connections among the disciplines involved and their relevance to biotechnological developments;
(5) have acquired the technical vocabulary needed to critically read research articles and to present them in oral and written forms.
Periodo: Secondo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Secondo semestre
Docente/i
Ricevimento:
Lunedi' ore 13-14
Unita' di Biochimica delle proteine, Edifici Biologici, Via Celoria 26, 5C