Fisica dei solidi
A.A. 2025/2026
Obiettivi formativi
L'insegnamento si propone di sviluppare una comprensione di molti fenomeni e proprieta` fondamentali della fisica dello stato solido. In
particolare si studiano le proprieta` elettroniche, vibrazionali e spettroscopiche dei cristalli, e le proprieta` di conduzione elettrica e del calore.
particolare si studiano le proprieta` elettroniche, vibrazionali e spettroscopiche dei cristalli, e le proprieta` di conduzione elettrica e del calore.
Risultati apprendimento attesi
Lo studente dovrebbe assumere competenze nei seguenti argomenti dettagliati:
1. Strutture cristalline periodiche. Reticoli diretto e reciproco.
Indici di Miller. Frazione di impaccamento di sfere. Esempi notevoli di
strutture cristalline. Cenno ai quasicristalli. Diffrazione di raggi X
e di neutroni. Fattore di forma e fattore di struttura.
2. La separazione adiabatica. Energia di coesione di un solido. Esempio:
energia di coesione di cristalli di gas nobili. Energia di coesione di
cristalli ionici. Somme di Madelung. Significato dell'energia totale.
Calcolo ab initio del potenziale adiabatico: metodo di Hartree
Fock. Derivate funzionali. Teoria dal funzionale densita` e sue
approssimazioni: metodo di Thomas-Fermi e metodo di Kohn-Sham.
Approssimazione di densita` locale per l'energia di scambio e
correlazione. Confronto tra Hartree-Fock e DFT.
3. Teoria della risposta elastica dei solidi. Analisi di deformazioni e
sforzi elastici. Onde in cristalli cubici.
4. L'approssimazione armonica. Vibrazioni reticolari e fononi.
Vibrazioni longitudinali e trasverse in solidi cubici. Teoria generale
delle vibrazioni dei cristalli. Modi ottici ed effetti di interazioni
a lungo raggio. Splitting LO-TO in cristalli cubici.
5. Fononi, calcoli ed esperimenti per la loro misura. Proprieta` termiche
dei fononi. Densita` spettrale degli oscillatori. Modello di Debye.
- 15 -
6. Effetti anarmonici nei cristalli: teoria di Gruneisen della dilatazione
termica dei solidi. Collisioni tra fononi; conducibilita` termica.
Ruolo dei processi umklapp. Dipendenza della conducibilita` termica
dalla temperatura.
7. Elettroni nei metalli: il modello a jellio nel formalismo DFT. Energia
di scambio e correlazione. Energia cinetica e contributo elettronico
al calore specifico. Effetti di banda e di scattering sul calore
specifico elettronico: la massa efficace termica. Trasporto di
corrente in approssimazione di tempo di scattering: conduttivita`,
resistivita`. Effetto di campi magnetici. Frequenza di ciclotrone.
Effetto Hall, coefficiente Hall. Conducibilita` elettrica in alternata.
8. Theory delle bande nei solidi: modelli e metodi di calcolo delle bande.
Origine fisica delle aperture dei gaps. Formulazione del moto
elettronico in spazio reciproco. Teorema di Bloch e sua dimostrazione.
Soluzione del moto elettronico e struttura a bande. Riempimento delle
bande: metalli, semiconduttori e isolanti. Equazioni semiclassiche per
il moto degli elettroni nei cristalli. Massa efficace. Lacune e loro
moto.
9. Proprieta` di base di vari semiconduttori. Gap diretti e indiretti e
loro ampiezza. Modello a due bande. Donori, accettori e livelli
d'impurezza. Occupazione d'equilibrio delle bande. Legge d'azione di
massa. Densita` di portatori in semiconduttori intrinseci e drogati.
Conducibilita` elettrica in funzione della temperatura. Mobilita` dei
portatori. Effetto Hall nei semiconduttori. Cenno all'effetto
Ettingshausen. Risonanza di ciclotrone. Densita` di portatori fuori
dall'equilibrio. Equazioni del moto per i portatori nei
semiconduttori. Portatori di maggioranza e schermaggio alla Debye.
Portatori di minoranza e vita media di ricombinazione. La giunzione pn
all'equilibrio e polarizzata. Applicazioni. Un panorama sulle
applicazioni dei semiconduttori.
10. Metalli: conducibilita` in alternata, funzioni di risposta
dielettica. Modello di Drude. Lunghezza di penetrazione. Limiti di
applicabilita` del modello a metalli reali. Trasporto elettronico nel
formalismo dell'equazione di Boltzmann. Media sulla distribuzione.
Correnti elettrica e di energia, in continua e in alternata. Trasporto
in presenza di gradienti: effetti di fuori-equilibrio e termoelettrici.
11. Elementi su ulteriori fenomeni legati all'interazione elettrone-elettrone
ed elettrone-fonone: eccitoni, plasmoni, polaritoni, polaroni,
superconduttivita`
1. Strutture cristalline periodiche. Reticoli diretto e reciproco.
Indici di Miller. Frazione di impaccamento di sfere. Esempi notevoli di
strutture cristalline. Cenno ai quasicristalli. Diffrazione di raggi X
e di neutroni. Fattore di forma e fattore di struttura.
2. La separazione adiabatica. Energia di coesione di un solido. Esempio:
energia di coesione di cristalli di gas nobili. Energia di coesione di
cristalli ionici. Somme di Madelung. Significato dell'energia totale.
Calcolo ab initio del potenziale adiabatico: metodo di Hartree
Fock. Derivate funzionali. Teoria dal funzionale densita` e sue
approssimazioni: metodo di Thomas-Fermi e metodo di Kohn-Sham.
Approssimazione di densita` locale per l'energia di scambio e
correlazione. Confronto tra Hartree-Fock e DFT.
3. Teoria della risposta elastica dei solidi. Analisi di deformazioni e
sforzi elastici. Onde in cristalli cubici.
4. L'approssimazione armonica. Vibrazioni reticolari e fononi.
Vibrazioni longitudinali e trasverse in solidi cubici. Teoria generale
delle vibrazioni dei cristalli. Modi ottici ed effetti di interazioni
a lungo raggio. Splitting LO-TO in cristalli cubici.
5. Fononi, calcoli ed esperimenti per la loro misura. Proprieta` termiche
dei fononi. Densita` spettrale degli oscillatori. Modello di Debye.
- 15 -
6. Effetti anarmonici nei cristalli: teoria di Gruneisen della dilatazione
termica dei solidi. Collisioni tra fononi; conducibilita` termica.
Ruolo dei processi umklapp. Dipendenza della conducibilita` termica
dalla temperatura.
7. Elettroni nei metalli: il modello a jellio nel formalismo DFT. Energia
di scambio e correlazione. Energia cinetica e contributo elettronico
al calore specifico. Effetti di banda e di scattering sul calore
specifico elettronico: la massa efficace termica. Trasporto di
corrente in approssimazione di tempo di scattering: conduttivita`,
resistivita`. Effetto di campi magnetici. Frequenza di ciclotrone.
Effetto Hall, coefficiente Hall. Conducibilita` elettrica in alternata.
8. Theory delle bande nei solidi: modelli e metodi di calcolo delle bande.
Origine fisica delle aperture dei gaps. Formulazione del moto
elettronico in spazio reciproco. Teorema di Bloch e sua dimostrazione.
Soluzione del moto elettronico e struttura a bande. Riempimento delle
bande: metalli, semiconduttori e isolanti. Equazioni semiclassiche per
il moto degli elettroni nei cristalli. Massa efficace. Lacune e loro
moto.
9. Proprieta` di base di vari semiconduttori. Gap diretti e indiretti e
loro ampiezza. Modello a due bande. Donori, accettori e livelli
d'impurezza. Occupazione d'equilibrio delle bande. Legge d'azione di
massa. Densita` di portatori in semiconduttori intrinseci e drogati.
Conducibilita` elettrica in funzione della temperatura. Mobilita` dei
portatori. Effetto Hall nei semiconduttori. Cenno all'effetto
Ettingshausen. Risonanza di ciclotrone. Densita` di portatori fuori
dall'equilibrio. Equazioni del moto per i portatori nei
semiconduttori. Portatori di maggioranza e schermaggio alla Debye.
Portatori di minoranza e vita media di ricombinazione. La giunzione pn
all'equilibrio e polarizzata. Applicazioni. Un panorama sulle
applicazioni dei semiconduttori.
10. Metalli: conducibilita` in alternata, funzioni di risposta
dielettica. Modello di Drude. Lunghezza di penetrazione. Limiti di
applicabilita` del modello a metalli reali. Trasporto elettronico nel
formalismo dell'equazione di Boltzmann. Media sulla distribuzione.
Correnti elettrica e di energia, in continua e in alternata. Trasporto
in presenza di gradienti: effetti di fuori-equilibrio e termoelettrici.
11. Elementi su ulteriori fenomeni legati all'interazione elettrone-elettrone
ed elettrone-fonone: eccitoni, plasmoni, polaritoni, polaroni,
superconduttivita`
Periodo: Secondo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Secondo semestre
Docente/i