Workshop: software tools for statistics
A.A. 2024/2025
Obiettivi formativi
The course aims to train students to manage theoretical and modern computational tools of statistics, by analyzing simulated and real data sets. We introduce and use the open source R software, which is the state-of-art in the scientific community and widely used in many industrial and commercial environments. Students will improve their computing and modelling abilities as well as their probem solving attitudes.
Risultati apprendimento attesi
The student will be able to perform a simple statistical data analysis and to produce reports, using the R software. S/he shall have acquired the ability to use basic R tools and to extract relevant information from the available data, still keeping the consciousness of the uncertainty of the results.
Periodo: Primo semestre
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Primo semestre
Programma
During the course the basic theory and the implementation in R of the following statistical techniques will be introduced:
1. Distributions, and parameters estimates
2. Confidence intervals
3. Hypotheses tests
4. Linear regression
The implementation in R will be explained on the basis of suitable case studies.
1. Distributions, and parameters estimates
2. Confidence intervals
3. Hypotheses tests
4. Linear regression
The implementation in R will be explained on the basis of suitable case studies.
Prerequisiti
The students should be familiar with basic math, probability and statistics. They should also be familiar with basic operations on a PC (at least one among macOS, Windows, and Linux), such as how to install and use programs.
Metodi didattici
Frontal lectures and online sessions. Frontal lectures introduce the statistical techniques to be implemented using R. Online sessions with RStudio are devoted to case studies: students will create reports using mainly their laptops (macOS, Windows, Linux allowed).
Materiale di riferimento
1. R.V.Hogg, E.A. Tanis, D.L.Zimmerman, Probability and Statistical Inference, Pearson, Nineth Edition or more recent ones
2. H.Smith, N.R.Draper, Applied regression analysis, Wiley, 3rd edition or more recent ones
3. Nicholas J. Horton, Ken Kleinman, Using R and RStudio for Data Management, Statistical Analysis and Graphics, CRC Press, Second edition or more recent ones.
4. Notes of the teachers
2. H.Smith, N.R.Draper, Applied regression analysis, Wiley, 3rd edition or more recent ones
3. Nicholas J. Horton, Ken Kleinman, Using R and RStudio for Data Management, Statistical Analysis and Graphics, CRC Press, Second edition or more recent ones.
4. Notes of the teachers
Modalità di verifica dell’apprendimento e criteri di valutazione
The evaluation of the achievements of the training objectives will consist in the individual production of reports made using R source code. Each report will be focused on a case study of statistical data analysis assigned to each student during the course.
The student will be eligible to be evaluated only after delivering all the required reports, each one containing all the listed points properly implemented.
The student will be eligible to be evaluated only after delivering all the required reports, each one containing all the listed points properly implemented.
Siti didattici
Docente/i
Ricevimento:
Su appuntamento per email
studio o online (videoconferenza)