Seismic and wave field exploration and laboratory
A.A. 2024/2025
Obiettivi formativi
Non definiti
Risultati apprendimento attesi
Non definiti
Periodo: Secondo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento può essere seguito come corso singolo.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Secondo semestre
Programma
· Basic principles of wave field exploration: wave equation and wave propagation; impedance contrast and reflection/transmission coefficients; Impulse response and Green's theorem; reflectivity and convolutional model for synthetic traces; Fourier transform, convolution, correlation, autocorrelation and related properties; minimum phase wavelets and their properties; sampling rate, aliasing and Nyquist theorem.
· Acquisition of seismic data: impulsive sources and vibroseis; geophones and hydrophones; attenuation processes; acquisition layout in reflection seismic, multi-fold acquisition, common-mid-point (CMP) gathers; acquisition layout in refraction seismic and surface wave analysis.
· Construction of reflection seismic sections: gain correction; deconvolution; frequency-domain filtering and F-K analysis; static corrections; velocity analysis and Normal Moveout correction; stack and zero-offset sections; basic migration concepts and applications.
· Analysis of refraction and surface wave seismic data: traveltimes for horizontal and dipping layers; intercept times and plus-minus method (Generalized Reciprocal Methods); principles and measurement procedures in Multichannel analysis of surface waves (MASW) and Horizontal-to-vertical spectral ratio (HVSR).
· Georadar: similarities and differences between seismic and electromagnetic wave propagation; application of reflections seismic methods for the analysis of georadar data.
· Acquisition of seismic data: impulsive sources and vibroseis; geophones and hydrophones; attenuation processes; acquisition layout in reflection seismic, multi-fold acquisition, common-mid-point (CMP) gathers; acquisition layout in refraction seismic and surface wave analysis.
· Construction of reflection seismic sections: gain correction; deconvolution; frequency-domain filtering and F-K analysis; static corrections; velocity analysis and Normal Moveout correction; stack and zero-offset sections; basic migration concepts and applications.
· Analysis of refraction and surface wave seismic data: traveltimes for horizontal and dipping layers; intercept times and plus-minus method (Generalized Reciprocal Methods); principles and measurement procedures in Multichannel analysis of surface waves (MASW) and Horizontal-to-vertical spectral ratio (HVSR).
· Georadar: similarities and differences between seismic and electromagnetic wave propagation; application of reflections seismic methods for the analysis of georadar data.
Prerequisiti
Physics: knowledge of mechanics and electromagnetism. Mathematics: differential equations, complex numbers, Fourier analysis.
Metodi didattici
Theoretical lectures and practical exercises in python/Matlab, with implementation of simple processing and visualization scripts.
Materiale di riferimento
· Methods of Seismic Data Processing, Gary F. Margrave (https://www.crewes.org/ResearchLinks/FreeSoftware/)
· Numerical Methods of Exploration Seismology with algorithms in MATLAB, Gary F. Margrave (https://www.crewes.org/ResearchLinks/FreeSoftware/)
· Seismic data analysis, Oz Yilmaz, investigation in geophysics no.10, SEG
· Numerical Methods of Exploration Seismology with algorithms in MATLAB, Gary F. Margrave (https://www.crewes.org/ResearchLinks/FreeSoftware/)
· Seismic data analysis, Oz Yilmaz, investigation in geophysics no.10, SEG
Modalità di verifica dell’apprendimento e criteri di valutazione
Exam method: oral. Evaluation criteria: understanding of the physical principles of the methods and their applicability; critical reasoning and evaluation of data/processing steps; skill in the use of specialist lexicon.
The final score will be expressed in thirtieth.
The final score will be expressed in thirtieth.
GEO/11 - GEOFISICA APPLICATA - CFU: 9
Esercitazioni: 36 ore
Lezioni: 48 ore
Lezioni: 48 ore
Docenti:
Chen Jian, Fiandaca Gianluca
Docente/i