Molecular biology applied to biotechnology
A.A. 2024/2025
Obiettivi formativi
The course is aimed at giving the proper knowledge for the comprehension of biomolecular processes that are fundamental for cells and organisms function in both physiological and pathological conditions.
Risultati apprendimento attesi
This course allows you to consolidate, deepen and broaden your knowledge of molecular biology with particular emphasis on RNA biology, genome organization and engineering.
At the end of this course, you will be able to:
-prove understanding and knowledge of the central aspects of molecular biology and their relevance and application to biomedical and biotechnology fields.
-engage in critical weighing of recent biomedical applications of molecular biology and critically assess different methods of research.
At the end of this course, you will be able to:
-prove understanding and knowledge of the central aspects of molecular biology and their relevance and application to biomedical and biotechnology fields.
-engage in critical weighing of recent biomedical applications of molecular biology and critically assess different methods of research.
Periodo: Secondo trimestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento può essere seguito come corso singolo.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Secondo trimestre
Programma
NON-CODING REGULATORY RNAs
- Small non coding RNAs (snRNA, snoRNA, siRNA, microRNA, piRNA): definition, classification, structure, mechanism of action and physio-pathological examples.
- Long non coding RNAs: definition, classification, structure, mechanism of action and physio-pathological examples.
DYNAMICS OF THE REPETITIVE ELEMENTS OF DNA IN CELL IDENTITY, DIFFERENTIATION, PATHOLOGIES AND THEIR EPIGENETIC ROLE.
- Tandem repeats, satellite DNA, VNTR, Retrotrasposons, SINEs, LINEs: definition, classification, structure, mechanism of action and physio-pathological examples.
3D GENOME ARCHITECTURE
- Genome hierarchy and organization.
- Models for the genome tridimensional organization.
- Functional role of nuclear domains and chromosome territories.
- Techniques for the study of 3D genome structure.
NEXT GENERATION SEQUENCING: APPLICATIONS AND DATA ANALYSIS
- NGS: Principles and technologies.
- NGS applications: whole genome sequencing; transcriptomics; capture sequencing (exome sequencing and custom target); epigenetics.
- Single cell transcriptomics.
- Elements of bioinformatic for NGS data analysis.
GENOME ENGINEERING
- Gene trapping, gene targeting, conditional knockout.
- Homologous recombination, artificial restriction enzymes: Zinc Fingers Nucleases, TALEN, CRISPR/Cas9.
LABORATORY PRACTICE:
Methodologies for RNA analysis.
- Small non coding RNAs (snRNA, snoRNA, siRNA, microRNA, piRNA): definition, classification, structure, mechanism of action and physio-pathological examples.
- Long non coding RNAs: definition, classification, structure, mechanism of action and physio-pathological examples.
DYNAMICS OF THE REPETITIVE ELEMENTS OF DNA IN CELL IDENTITY, DIFFERENTIATION, PATHOLOGIES AND THEIR EPIGENETIC ROLE.
- Tandem repeats, satellite DNA, VNTR, Retrotrasposons, SINEs, LINEs: definition, classification, structure, mechanism of action and physio-pathological examples.
3D GENOME ARCHITECTURE
- Genome hierarchy and organization.
- Models for the genome tridimensional organization.
- Functional role of nuclear domains and chromosome territories.
- Techniques for the study of 3D genome structure.
NEXT GENERATION SEQUENCING: APPLICATIONS AND DATA ANALYSIS
- NGS: Principles and technologies.
- NGS applications: whole genome sequencing; transcriptomics; capture sequencing (exome sequencing and custom target); epigenetics.
- Single cell transcriptomics.
- Elements of bioinformatic for NGS data analysis.
GENOME ENGINEERING
- Gene trapping, gene targeting, conditional knockout.
- Homologous recombination, artificial restriction enzymes: Zinc Fingers Nucleases, TALEN, CRISPR/Cas9.
LABORATORY PRACTICE:
Methodologies for RNA analysis.
Prerequisiti
Basic knowledge of Molecular Biology: main molecular biology techniques for DNA, RNA and protein analysis, gene expression (DNA replication, transcription and translation), basic concepts of epigenetics, non-coding RNAs.
Metodi didattici
The teacher will use frontal lectures, analysis of scientific papers and a bioinformatics laboratory.
Attendance is compulsory.
During the course bibliographic references on the topics presented will be provided by the teacher.
Attendance is compulsory.
During the course bibliographic references on the topics presented will be provided by the teacher.
Materiale di riferimento
During the course we will be provided by the teachers bibliographic references on the topics presented.
Modalità di verifica dell’apprendimento e criteri di valutazione
Oral examination at the end of the course + journal club (group presentation of a paper) during the course.
Parameters measured: ability to organize the knowledge effectively and to think critically about what has been studied.
Assessment results in 30-point scale.
Parameters measured: ability to organize the knowledge effectively and to think critically about what has been studied.
Assessment results in 30-point scale.
BIO/11 - BIOLOGIA MOLECOLARE - CFU: 7
Esercitazioni: 32 ore
Lezioni: 35 ore
Lezioni: 35 ore
Docente:
Pagani Massimiliano
Turni:
Turno
Docente:
Pagani MassimilianoDocente/i