Advanced industrial chemistry with lab
A.A. 2024/2025
Obiettivi formativi
The course aims to provide an advanced knowledge of the main manufacturing processes of the organic chemical industry. Some industrially significant products will be prepared during the laboratory session.
Risultati apprendimento attesi
Students will gain a detailed knowledge of hydrocarbon conversion processes and main bulk chemicals and some fine chemical processes of organic industrial chemistry.
Periodo: Primo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento può essere seguito come corso singolo.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Primo semestre
Programma
Hydrocarbon conversion processes: catalytic cracking, hydrocracking, steam cracking, reforming. Alkylation and isomerisation processes for production of high octane gasoline. Desulfurization processes: Claus process and biodesulfuration. Conversion of oil refining residues. Olefins industrial manufacture by ethylene oligomerization. Separation of C4 and C5 streams and use of conjugated diolefins: butadiene, isoprene, cyclopentadiene, chloroprene. Olefin metathesis. Methyl methacrylate manufacturing processes. Production of acetic acid, ethylacetate and acetic anhydride. Acetylene manufacturing processes. Ethylene derived products: acetaldehyde, ethylene oxide, ethylene glycols. Propylene derived products: propylene oxide and propylene glycols. Adipic acid and caprolactam manufacturing processes. Production and conversion processes of aromatic compounds. Phenol, bisphenol A and polycarbonate. Epoxyresins. Detergents and manufacturing processes of alkylbenzensulfonates and novel detergents from renewable sources. Sustainable industrial chemistry: comparative assessment of alternative processes, green metrics and process intensification. Phase transfer catalysis.
During the laboratory a series of experiments concerning the preparation of intermediates and products of industrial interest will be individually carried out through one step or multi-step procedures. The products thus obtained will be characterized through 1H NMR, HPLC AND GC analysis.
During the laboratory a series of experiments concerning the preparation of intermediates and products of industrial interest will be individually carried out through one step or multi-step procedures. The products thus obtained will be characterized through 1H NMR, HPLC AND GC analysis.
Prerequisiti
Concetti fondamentali della chimica organica.
Potranno frequentare il laboratorio solo gli studenti iscritti al Master Degree.
Potranno frequentare il laboratorio solo gli studenti iscritti al Master Degree.
Metodi didattici
Traditional format with regularly scheduled class sessions on campus.
It is warmly suggested to participate to classes.
It is warmly suggested to participate to classes.
Materiale di riferimento
Reference material
- H. I. Arpe, Industrial Organic Chemistry, 5a Ed. VHC, Weinheim, 2010
- C. Giavarini, Guida allo Studio dei Processi di Raffinazione e Petrolchimici, Ed. Scien., Siderea, Roma, 1999.
- slides of all lectures are available on the Ariel platform
- Additional material concerning practical session in the laboratory will be provided.
- H. I. Arpe, Industrial Organic Chemistry, 5a Ed. VHC, Weinheim, 2010
- C. Giavarini, Guida allo Studio dei Processi di Raffinazione e Petrolchimici, Ed. Scien., Siderea, Roma, 1999.
- slides of all lectures are available on the Ariel platform
- Additional material concerning practical session in the laboratory will be provided.
Modalità di verifica dell’apprendimento e criteri di valutazione
The student knowledge and understanding of the subjects presented in class will be evaluated through an oral exam. Moreover, an additional purpose of the oral exam is to assess the capability to have a global picture of the program and to use the proper terminology.
An additional item for the assessment will be the discussion on a written report related to the experiments carried out in the laboratory that students need to deliver at the end of the laboratory section.
An additional item for the assessment will be the discussion on a written report related to the experiments carried out in the laboratory that students need to deliver at the end of the laboratory section.
CHIM/04 - CHIMICA INDUSTRIALE - CFU: 9
Laboratori: 48 ore
Lezioni: 48 ore
Lezioni: 48 ore
Docenti:
Albanese Domenico Carlo Maria, Bianchi Claudia Letizia Maddalena, Gazzotti Stefano, Ortenzi Marco Aldo
Turni:
Corso B
Docente:
Ortenzi Marco AldoSiti didattici
Docente/i
Ricevimento:
orario libero
ufficio (Dipartimento di Chimica, via Golgi 19, ala C - 2° piano stanza 2008)
Ricevimento:
Tutti i giorni - meglio previo appuntamento
Edificio 5, Corpo B, 3° piano, stanza 3050