Elementi di analisi funzionale

A.A. 2023/2024
6
Crediti massimi
42
Ore totali
SSD
MAT/05
Lingua
Italiano
Obiettivi formativi
L'insegnamento è finalizzato a fornire nozioni e strumenti esclusivamente di base nell'ambito (infinito-dimensionale) dell'analisi funzionale lineare ed è da intendersi come propedeutico ad eventuali insegnamenti successivi.
Risultati apprendimento attesi
Conoscenza delle tecniche basilari dell'Analisi Funzionale e loro impiego nella soluzione di semplici problemi teorici e/o di Matematica applicata.
Corso singolo

Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.

Programma e organizzazione didattica

Edizione unica

Responsabile
Periodo
Primo semestre

Programma
Spazi normati e di Banach, cenni al completamento. Norme equivalenti. Operatori lineari continui, lo spazio degli operatori. Lo spazio duale. Teoremi di Hahn-Banach. Compattezza forte.

Esempi di spazi di Banach (di funzioni o successioni) e loro duali. Spazi vettoriali topologici. Topologie deboli, riflessività, compattezza debole e debole-star. Cenni alla metrizzabilità delle topologie deboli.

Teorema di Baire e le sue applicazioni: Principio dell'uniforme limitatezza, Teorema della mappa aperta e Teorema del grafico chiuso. Operatore aggiunto. Operatori compatti. Operatori integrali di Fredholm e di Volterra.

Cenni alla teoria spettrale. Teoria spettrale degli operatori compatti.
Prerequisiti
I contenuti dei corsi di Analisi Matematica 1, 2, 3 e 4. Elementi di base di Topologia Generale. Elementi base di Algebra Lineare. Elementi di base di Analisi Reale, in particolare è fondamentale la conoscenza e familiarità con gli spazi L^p e gli spazi di Hilbert.
Metodi didattici
L'insegnamento verrà condotto attraverso lezioni frontali svolte alla lavagna.
Materiale di riferimento
Note del corso fornite dal docente. Si segnalano inoltre:
- John Conway: A Course in Functional Analysis, Springer-Verlag 2007.
- Walter Rudin: Functional Analysis, 2nd Edition, McGraw-Hill 1991.
Modalità di verifica dell’apprendimento e criteri di valutazione
Nel corso del semestre, verrà assegnato come compito a casa lo svolgimento di alcuni esercizi. L'esame finale consiste in una prova orale. Verrà richiesto di illustrare e discutere alcuni risultati facenti parte del programma dell'insegnamento o ad esso direttamente collegabili, nonché di risolvere qualche problema nell'ambito del programma stesso, al fine di valutare le conoscenze e la comprensione degli argomenti trattati, nonché la capacità di saperli connettere e applicare correttamente. La durata media della prova orale è di 45 minuti.
MAT/05 - ANALISI MATEMATICA - CFU: 6
Lezioni: 42 ore
Docente/i
Ricevimento:
Per appuntamento
Studio 1021 Dipartimento di Matematica