Statistics for Big Data for Economics and Business
A.Y. 2024/2025
Learning objectives
This course aims at introducing and illustrating specific statistical, IT and machine learning methodologies for the analysis of Big Data in economic, business and financial applications. The course will focus mainly on the Python programming language, which is by far the most used in Big Data applications, but some parts will be devoted to the R language and other more classical languages such as Java. On the statistical side, supervised and unsupervised statistical learning themes will be proposed with some reference to Bayesian statistics.
Expected learning outcomes
At the end of the course, students will have acquired adequate statistical and programming skills allowing for mastering the tools necessary for the analysis of Big Data and the extrapolation of information of interest in the economic, business and financial fields.
Lesson period: Third trimester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course can be attended as a single course.
Course syllabus and organization
Single session
Lesson period
Third trimester
SECS-S/03 - ECONOMIC STATISTICS - University credits: 6
Lessons: 40 hours