Quantum Phisycs 2
A.Y. 2025/2026
Learning objectives
This is an advanced quantum mechanics course that builds upon the
introductory course of the prevous semester, and specifically introduces
three-dimensional systems (in particular the hydrogen atom) and a
variety of theoretical developments, including the theory of angular
momentum, spin, path-integral methods, perturbation theory, scattering
theory, identical particles, and entanglement.
introductory course of the prevous semester, and specifically introduces
three-dimensional systems (in particular the hydrogen atom) and a
variety of theoretical developments, including the theory of angular
momentum, spin, path-integral methods, perturbation theory, scattering
theory, identical particles, and entanglement.
Expected learning outcomes
At the end of this course the student
1. will know how to deal with the Schroedinger equation for intera
cting two-particles systems (including the case of identical particles) 2. will be able to solve for the spectrum of the Hamiltonian for
central problems using spherical coordinates
3. will be able to determine the spectrum of the hydrogen atom
4. will be able to determine the spectrum of the orbital angular momentum
operator and of intrinsic angular momentum (spin) operators, and will
be able to add angular momenta
5. will be capable of connecting classical and quantum equations of motion, using either the WKB approximation or a path-integral
approach
6. will be able to compute time-independent perturbations to the spectrum of a known Hamiltonian
7. will be able to calculate a transition amplitude using time-dependent perturbation theory
8. will be able to compute a cross section in terms of an amplitude
9. will be able to write down the wave function for a system of identical particles
10. will be able to determine the density matrix for a statistical ensemble and use it to calculate expectation values.
1. will know how to deal with the Schroedinger equation for intera
cting two-particles systems (including the case of identical particles) 2. will be able to solve for the spectrum of the Hamiltonian for
central problems using spherical coordinates
3. will be able to determine the spectrum of the hydrogen atom
4. will be able to determine the spectrum of the orbital angular momentum
operator and of intrinsic angular momentum (spin) operators, and will
be able to add angular momenta
5. will be capable of connecting classical and quantum equations of motion, using either the WKB approximation or a path-integral
approach
6. will be able to compute time-independent perturbations to the spectrum of a known Hamiltonian
7. will be able to calculate a transition amplitude using time-dependent perturbation theory
8. will be able to compute a cross section in terms of an amplitude
9. will be able to write down the wave function for a system of identical particles
10. will be able to determine the density matrix for a statistical ensemble and use it to calculate expectation values.
Lesson period: First semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Single session
Course currently not available
FIS/02 - THEORETICAL PHYSICS, MATHEMATICAL MODELS AND METHODS - University credits: 8
Practicals: 36 hours
Lessons: 40 hours
Lessons: 40 hours