Quantitative Chemical Structure and Activity Relationship
A.Y. 2025/2026
Learning objectives
The purpose of this course is that participants gain knowledge on and understand:
- the computational strategies for modelling targets, responsible for biological activity and toxicity, simulating both their interaction with xenobiotics or biotechnological products and their molecular recognition mechanisms at an atomistic level;
- methods to predict and validate the mechanism of action (MoA) of xenobiotics and biotechnological products, with particular attention to a better rational design of experiments on animal models, according to the 3Rs principle.
- the principal physicochemical properties of xenobiotics of relevance to health risk assessment;
- the accuracy of in silico approaches used in scientific studies and risk assessment reports.
- the computational strategies for modelling targets, responsible for biological activity and toxicity, simulating both their interaction with xenobiotics or biotechnological products and their molecular recognition mechanisms at an atomistic level;
- methods to predict and validate the mechanism of action (MoA) of xenobiotics and biotechnological products, with particular attention to a better rational design of experiments on animal models, according to the 3Rs principle.
- the principal physicochemical properties of xenobiotics of relevance to health risk assessment;
- the accuracy of in silico approaches used in scientific studies and risk assessment reports.
Expected learning outcomes
At the end of the course, the student is expected to know:
- the application of the computational methods used in toxicological research;
to critically evaluate:
- the pros and cons of in silico prediction approaches used in risk assessment reports;
to gain:
- the bases for deeply understanding methods and results of a toxicological paper and/or data reports;
to obtain:
a multifaceted bioinformatics knowledgebase, useful for further student's personal study of this topic.
- the application of the computational methods used in toxicological research;
to critically evaluate:
- the pros and cons of in silico prediction approaches used in risk assessment reports;
to gain:
- the bases for deeply understanding methods and results of a toxicological paper and/or data reports;
to obtain:
a multifaceted bioinformatics knowledgebase, useful for further student's personal study of this topic.
Lesson period: year
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Single session
Course currently not available
In Silico Methods in Toxicology
BIO/14 - PHARMACOLOGY - University credits: 5
Lectures: 40 hours
Structural Bioinformatics
BIO/10 - BIOCHEMISTRY - University credits: 5
Individual laboratory activities: 16 hours
Lectures: 32 hours
Lectures: 32 hours