Industrial Processes and Scale-Up
A.Y. 2023/2024
Learning objectives
The objective of the course is to emphasize the importance of scale-up methodology for the unit operations in chemical plants (reaction and separation processes), to give the theoretical basis for a correct approach to a scaling-up and to introduce the simulation science and the process simulation. The correct theoretical and experimental approaches of this kind of study will be presented and discussed; different industrial examples will be considered.
Expected learning outcomes
At the end of the course the students will be able to use simulation plant software for the project and optimization of a chemical plant, to analyze a chemical process (reaction or separation) from a laboratory scale experiment to a possible industrial process layout; to apply kinetic and thermodynamic models for scale up development of new technologies.
Lesson period: First semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Single session
Responsible
Lesson period
First semester
Course syllabus
The course will be devoted to a specific introduction of the scaling-up methodology for chemical processes from a chemical and an engineering point of view. Both chemical reactions and separation processes will be taken into account. More in detail, the following topics will be explained and discussed:
- Scaling-up of a chemical operation: meaning and importance
- Laboratories and pilot-plant studies
- Models for the interpretation of experimental data and simulation of a chemical unit operations: steady-state and dynamic models
- Physical and chemicals models
- Pilot plants: raw materials, mock-ups, degree of freedom, constructive materials, test program and use of results
- Experimental techniques in scaling-up methodology
- Applications to industrial process development: industrial examples and case-histories
- Control technology in chemical processes
- Environmental and regulatory issues
- Use of simulation softwares in the scaling-up: PRO II. Tutorial of these programs and their use for several aspects involved in the topics of the course.
- Immersive Training system for a virtual visit in a Crude Distillation Unit plant.
- introduction to process instrumentation and its programming through exercises with ARDUINO components
- Scaling-up of a chemical operation: meaning and importance
- Laboratories and pilot-plant studies
- Models for the interpretation of experimental data and simulation of a chemical unit operations: steady-state and dynamic models
- Physical and chemicals models
- Pilot plants: raw materials, mock-ups, degree of freedom, constructive materials, test program and use of results
- Experimental techniques in scaling-up methodology
- Applications to industrial process development: industrial examples and case-histories
- Control technology in chemical processes
- Environmental and regulatory issues
- Use of simulation softwares in the scaling-up: PRO II. Tutorial of these programs and their use for several aspects involved in the topics of the course.
- Immersive Training system for a virtual visit in a Crude Distillation Unit plant.
- introduction to process instrumentation and its programming through exercises with ARDUINO components
Prerequisites for admission
The indispensable prerequisites are a good knowledge of physical chemistry, in particular of chemical kinetics, of the laws of thermodynamic equilibrium and of the basic theory of distillation columns and liquid-vapor equilibria. It is also recommended to have basic notions on transport phenomena (turbulent flow, laminar flow, heat exchangers) and chemical reactors. These prerequisites are taught in the three-year degree courses in industrial chemistry, mainly Physical Chemistry I, Physical Chemistry II, Chemical Plants with Laboratory, Industrial Physical Chemistry, Industrial Chemistry, Complements of mathematics and numerical calculus.
Teaching methods
The course will be based on 48 h of lessons in room in which: 1) theory of scale up will be explained (40%); 2) simulation software of chemical plants will be introduced and used (40%); 3) industrial case studies will be considered (20%). Moreover, during the course, a visit in the Radici plant in Novara will be proposed and organized, if it will be possible for the health situation.
Teaching Resources
- A. C. Dimian, C. S. Bildea, A. A. Kiss: Integrated Design and Simulation of Chemical Processes", 2nd Edition, Elsevier disponibile nella biblioteca di Chimica)
- V. Ragaini, C. Pirola, "Processi di Separazione nell'Industria Chimica", Hoepli
- The properties of Gases and Liquids Autori: B. Poling; J. 'O Connell; J. Prausnitz. McGraw-Hill 2004
- Scale-up Methodology for Chemical Process. Autori: J. B. Euzen, P. Trambouze, J. P. Wauquier, Edition Technip.
- V. Ragaini, C. Pirola, "Processi di Separazione nell'Industria Chimica", Hoepli
- The properties of Gases and Liquids Autori: B. Poling; J. 'O Connell; J. Prausnitz. McGraw-Hill 2004
- Scale-up Methodology for Chemical Process. Autori: J. B. Euzen, P. Trambouze, J. P. Wauquier, Edition Technip.
Assessment methods and Criteria
All the topics considered in the course will be discussed in a oral or written examination. Theoretical questions and/or practical exercises using the simulation software will be requested. The students should be able to discuss all the topics of the course, to explain the industrial examples considered in the lessons and to make exercises using the simulation software concerning optimization of columns or reactors.
Educational website(s)
Professor(s)
Reception:
Monday: 9:30-13:30 am
Pilot Plants Laboratory (Build # 7 of the Chemistry Departement)