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CURRICULUM VITAE
MARCO SANSOTTERA

Personal Information

Name and surname: Marco Sansottera

Date of birth: 1983.03.29

Citizenship: Italian

Address: Via Cesare Saldini, 50 — 20133 Milano

Web page: http://www.mat.unimi.it/users/sansotte/

Current position

2017.03.01 – now Postdoctoral Researcher (RTD-A), University of Milan.

Research experiences

2013.09.01 – 2017.02.28 Postdoctoral Researcher at the University of Milan — “Con-
struction of Invariant Manifolds via Normal Forms: from Celestial Mechanics to Hamil-
tonian PDE”. Supervisor: Prof. A. Giorgilli.

2011.10.01 – 2013.08.31 FSR Postdoctoral Researcher at the University of Namur
(“FSR Incoming Post-doctoral Fellowship of the Académie universitaire Louvain, co-
funded by the Marie Curie Actions of the European Commission”) — “Dynamics near
invariant manifolds (DyNeInMa)”. Supervisor: Prof. A. Lemâıtre.

2010.11.01 – 2011.04.30 Postdoctoral Researcher at the University of Rome “Tor
Vergata” — “Stabilità dei sistemi planetari, aspetti teorici e computazionali”. Supervi-
sor: Prof. U. Locatelli.

2007.11.05 – 2011.02.11 Ph.D. in Mathematics at the University of Milan with full
marks and honors. Title of the thesis: “Effective Stability of Hamiltonian Planetary
Systems”. Supervisors: Prof. A. Giorgilli and Prof. U. Locatelli.

Awards and Habilitation

2018 Italian National Scientific Habilitation as Associate Professor in “01/A4 - Fisica
Matematica” (unanimous vote) — from 2018.07.03 to 2024.07.13.

2011 Awarded of a “INdAM-COFUND Fellowships in Mathematics and/or Applica-
tions for Experienced Researchers cofunded by Marie Courie” (outgoing type).

(not accepted because already beneficiary of a “FSR Incoming Post-doctoral Fellowship of the

Académie universitaire Louvain, cofunded by the Marie Curie Actions”)

http://www.mat.unimi.it/users/sansotte/
https://asn16.cineca.it/pubblico/miur/esito-abilitato/01%252FA4/2/5
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Research Projects

2019 Associate Invastigator of the Milan Research Unit for the PRIN research project
“New frontiers of Celestial Mechanics: theory and applications” (PI: Prof. Celletti).

2018 – now PI of the Progetto Giovani 2018 — INdAM-GNFM research project: “Res-
onant Normal Forms in Hamiltonian Systems”.

2017 – 2018 Member of the Progetto Giovani 2017 — INdAM-GNFM research project:
“Normal form techniques in Lattice Dynamics and Celestial Mechanics: perturbed dy-
namics via resonant normal forms” (PI: Dr. Penati).

2013 – 2016 Member of the PRIN research project “Teorie geometriche e analitiche
dei sistemi Hamiltoniani in dimensioni finite e infinite” (PI: Prof. Dubrovin).

2014 – now Member of the INdAM-GNFM research group.

2009 – 2011 Member of the INdAM-GNFM research group.

Organizing Experience

2014 Local Organizing Committee for the “International Astronomical Union (IAU)
Symposium 310: Complex planetary systems”, 7–11 July 2014, Namur, Belgium.

2013 – now Member of the “Commissione Informatica”, Dipartimento di Matematica,
Università degli Studi di Milano.

2008 – 2011 Member of the “Commissione Informatica”, Dipartimento di Matematica,
Università degli Studi di Milano.

Education

2005.07.22 – 2007.07.16 M.Sc. Mathematics at the University of Milano-Bicocca with
full marks and honors (110/110 cum laude). Title of the thesis: “Stabilità nel senso di
Nekhoroshev di tori KAM”. Supervisors: Prof. D. Noja, Prof. A. Giorgilli and Prof.
U. Locatelli.

2002.09.17 – 2005.07.18 B.Sc. in Mathematics at the University of Milano-Bicocca
with full marks and honors (110/110 cum laude). Title of the thesis: “Funzioni a vari-
azione limitata”. Supervisor: Prof. A. Cellina.

Lectures at Schools

2019 “KAM theory in Celestial Mechanics”, Master Mathematical and physical meth-
ods for space science, University of Turin, Turin, Italy.

2016 “Programmazione su schede grafiche (GPU) in CUDA”, Infrastrutture di Calcolo
a Basso Costo (INCA-ABACO), Università di Roma “Tor Vergata”, Roma, Italia.

2011 “Methods of algebraic manipulation in perturbation theory”, LAPIS 2011: Third
La Plata International School on Astronomy and Geophysics, La Plata, Argentina.
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Graduate Teaching

2017 – now Teaching assistant of the course: “Sistemi Hamiltoniani 1”, charged by
Prof. A. Giorgilli, Dept. of Mathematics, University of Milan.

2015 – 2016 Teaching assistant of the course: “Laboratorio di Modellistica Matemat-
ica”, charged by Dr. F. Ieva, Dept. of Mathematics, University of Milan.

2014 – 2016 Teaching assistant of the course: “Laboratorio di programmazione in
CUDA”, charged by Prof. A. Giorgilli, Dept. of Mathematics, University of Milan.

2013 – 2016 Teaching assistant of the course: “Laboratorio di Modellistica Matemat-
ica”, charged by Prof. G. Aletti, Dept. of Mathematics, University of Milan.

2012/13 Professor in charge of the course: “Applications des systèmes dynamique”,
Master in Mathematics, University of Namur.

Undergraduate Teaching

2018 – now Teaching assistant of the course: “Metodi e Modelli Matematici per le
Applicazioni”, charged by Prof. S. Paleari, Dept. of Mathematics, University of Milan.

2013 – 2018 Teaching assistant of the course: “Fisica Matematica 1”, charged by
Prof. A.Giorgilli, Dept. of Mathematics, University of Milan.

2009/10 Teaching assistant of the course: “Metodi e Modelli Matematici per le Appli-
cazioni”, charged by Prof. S. Paleari, Dept. of Mathematics, University of Milan.

2008 – 2010 Teaching assistant of the course: “Progetto MiniMat”, Facoltà di Scienze
e Tecnologie, University of Milan.

Theses supervision

Currently member of the steering committee of the Ph.D. thesis of Mara Volpi, Analysis
of the long-term stability of multi-planetary extrasolar systems and implications on their
orbital characteristics, University of Namur. Supervisor: Prof. A.-S. Libert.

Co-advisor of 7 Master Thesis in Mathematics at the University of Milan:

• V. Danesi: “Continuazione di orbite periodiche su tori risonanti” (2017).

• M. Nicoletti: “Ricerca di Orbite Periodiche nel Problema di Sitnikov” (2016).
• G. Pichierri: “Expansions in elliptic functions for highly eccentric planetary orbits”
(2015).

• P. Corazza: “Evoluzione di sistemi extrasolari in risonanza” (2015).

• S. Boiani: “Stabilità dei sistemi extrasolari: analisi della dipendenza dai parametri
orbitali” (2015).

• G.F. Pontoni: “Costruzione di funzioni invarianti per mappe simplettiche” (2014).

• L. Grassi: “Classical and Relativistic dynamics of extrasolar planetary systems”
(2013).
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Referee experiences

Referee for the journals:
• Astrophysics and Space Science;
• Celestial Mechanics and Dynamical Astronomy;
• Discrete & Continuous Dynamical Systems — Series A;
• International Journal of Bifurcation and Chaos;
• Journal of Differential Equations;
• Journal of Nonlinear Mathematical Physics;
• Mathematics in Computer Science;
• Physical Review E;
• Reviewer for Mathematical Reviews.

Registered in the Register of Expert Peer Reviewers for Italian Scientific Evaluation
(REPRISE) Section Ricerca di Base.
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Papers

[1] M. Sansottera: “Analysis of the frequency space for particle accelerator maps:
FMA and normal forms”, (to be submitted to Physica D) (2019).

[2] M. Sansottera, T. Penati, S. Paleari, V. Danesi: “On the continuation of degen-
erate periodic orbits via normal form: lower dimensional resonant tori”, (to be
submitted to CNSNS) (2019).

[3] T. Penati, V. Koukouloyannis, M. Sansottera, S. Paleari, P. Kevrekidis: “On
the nonexistence of degenerate phase-shift Multibreathers in a zigzag Klein-
Gordon model via dNLS approximation”, Physica-D (revised version under re-
view) (2019).

[4] D. Bambusi, A. Fusè, M. Sansottera: “Exponential stability in the perturbed cen-
tral motion”, RCD, 23 821–841 (2018).
DOI:10.1134/S156035471807002X arXiv:1705.00576

[5] M. Volpi, U. Locatelli, M. Sansottera: “A reverse KAM method to estimate un-
known mutual inclinations in exoplanetary systems”, CeMDA, 130:36 (2018).
DOI:10.1007/s10569-018-9829-5 arXiv:1712.07390

[6] T. Penati, M. Sansottera, V. Danesi: “On the continuation of degenerate periodic
orbits via normal form: full dimensional resonant tori”, CNSNS, 61, 198–224
(2018).
DOI:10.1016/j.cnsns.2018.02.003 arXiv:1709.07824

[7] T. Penati, M. Sansottera, S. Paleari, V. Koukouloyannis, P. Kevrekidis: “On
the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal
lattice”, Physica-D, 370, 1–13 (2018).
DOI:10.1016/j.physd.2017.12.012 arXiv:1707.01679

[8] A. Giorgilli, U. Locatelli, M. Sansottera: “Secular dynamics of a planar model
of the Sun-Jupiter-Saturn-Uranus system; effective stability into the light of Kol-
mogorov and Nekhoroshev theories”, RCD, 22, 54–77 (2017).
DOI:10.1134/S156035471701004X arXiv:1702.04894

[9] M. Sansottera, M. Ceccaroni: “Rigorous estimates for the relegation algorithm”,
CeMDA, 127, 1–18 (2017).
DOI:10.1007/s10569-016-9711-2 arXiv:1709.07830

[10] M. Sansottera, A. Giorgilli, T. Carletti: “High-order control for symplectic maps”,
Physica-D, 316, 1–15 (2016).
DOI:10.1016/j.physd.2015.10.012 arXiv:1510.06561

[11] M. Sansottera, C. Lhotka, A. Lemâıtre: “Effective resonant stability of Mercury”,
MNRAS, 452, 4145–4152 (2015).
DOI:10.1093/mnras/stv1429 arXiv:1510.06543

[12] M. Sansottera, L. Grassi, A. Giorgilli: “On the relativistic Lagrange-Laplace secu-
lar dynamics for extrasolar systems”, Proc. IAU Symposium S310, 74–77 (2015).
DOI:10.1017/S174392131400787X arXiv:1510.06523

[13] A. Giorgilli, U. Locatelli, M. Sansottera: “Improved convergence estimates for the
Schroder-Siegel problem”, Ann. di Mat. Pura ed Appl., 194, 995–1013 (2015).
DOI:10.1007/s10231-014-0408-4 arXiv:1712.08927

https://dx.doi.org/10.1134/S156035471807002X
https://arxiv.org/abs/1705.00576
https://dx.doi.org/10.1007/s10569-018-9829-5
https://arxiv.org/abs/1712.07390
https://dx.doi.org/10.1016/j.cnsns.2018.02.003
https://arxiv.org/abs/1709.07824
https://dx.doi.org/10.1016/j.physd.2017.12.012
https://arxiv.org/abs/1707.01679
https://dx.doi.org/10.1134/S156035471701004X
https://arxiv.org/abs/1702.04894
https://dx.doi.org/10.1007/s10569-016-9711-2
https://arxiv.org/abs/1709.07830
https://dx.doi.org/10.1016/j.physd.2015.10.012
https://arxiv.org/abs/1510.06561
https://dx.doi.org/10.1093/mnras/stv1429
https://arxiv.org/abs/1510.06543
https://dx.doi.org/10.1017/S174392131400787X
https://arxiv.org/abs/1510.06523
https://dx.doi.org/10.1007/s10231-014-0408-4
https://arxiv.org/abs/1712.08927
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[14] A. Giorgilli, U. Locatelli, M. Sansottera: “On the convergence of an algorithm
constructing the normal form for lower dimensional elliptic tori in planetary
systems”, CeMDA, 119, 397–424 (2014).
DOI:10.1007/s10569-014-9562-7 arXiv:1401.6529

[15] M. Sansottera, C. Lhotka, A. Lemâıtre: “Effective stability around the Cassini
state in the spin-orbit problem”, CeMDA, 119, 75–89 (2014).
DOI:10.1007/s10569-014-9547-6 arXiv:1510.06521

[16] A.-S. Libert, M. Sansottera: “On the extension of the Laplace-Lagrange secular
theory to order two in the masses for extrasolar systems”, CeMDA, 117, 149–168
(2013).
DOI:10.1007/s10569-013-9501-z arXiv:1306.5624

[17] M. Sansottera, U. Locatelli, A. Giorgilli: “On the stability of the secular evolution
of the planar Sun-Jupiter-Saturn-Uranus system”, Math. and Comp. in Sim., 88,
1–14 (2013).
DOI:10.1016/j.matcom.2010.11.018 arXiv:1010.2609

[18] A. Giorgilli, M. Sansottera: “Methods of algebraic manipulation in perturbation
theory”, Asociacion Argentina de Astronomia, 3, 147–183 (2011).
http://adsabs.harvard.edu/abs/2011WSAAA...3..147G arXiv:1303.7398

[19] M. Sansottera, U. Locatelli, A. Giorgilli: “A Semi-Analytic Algorithm for Con-
structing Lower Dimensional Elliptic Tori in Planetary Systems”, CeMDA, 111,
337–361 (2011).
DOI:10.1007/s10569-011-9375-x arXiv:1010.2617

[20] A. Giorgilli, U. Locatelli, M. Sansottera: “Su un’estensione della teoria di La-
grange per i moti secolari”, Rend. Ist. Lom., 143, 221–238 (2010).
arXiv:1303.7392

[21] A. Giorgilli, U. Locatelli, M. Sansottera: “Kolmogorov and Nekhoroshev theory
for the problem of three bodies”, CeMDA, 104, 159–173 (2009).
DOI:10.1007/s10569-009-9192-7 arXiv:1303.7395

[22] M. Sansottera: “Effective Stability of Hamiltonian Planetary Systems”, Ph.D.
Thesis (supervisors: A. Giorgilli and U. Locatelli), Università degli Studi di Mi-
lano (2011).
DOI:10.13130/sansottera-marco_phd2011-02-11

Talks & posters

[t1] “A reverse KAM method to estimate unknown mutual inclinations in exoplane-
tary systems”, Prospectives in Hamiltonian dynamics, Venice, Italy (2018).

[t2] “A reverse KAM method to estimate unknown mutual inclinations in exoplane-
tary systems”, Assemblea Scientifica G.N.F.M., Montecatini Terme, Pistoia, Italy
(2018).

[t3] “On the continuation of degenerate periodic orbits via normal form: full dimen-
sional resonant tori”, naXys seminar, Namur, Belgium (2017).

[t4] “Analytical treatment of long-term evolution of extrasolar systems: an extension
of the classical Laplace-Lagrange secular theory”, CELMEC VII, San Martino al
Cimino, Viterbo, Italy (2017) [keynote speaker].

https://dx.doi.org/10.1007/s10569-014-9562-7
https://arxiv.org/abs/1401.6529
https://dx.doi.org/10.1007/s10569-014-9547-6
https://arxiv.org/abs/1510.06521
https://dx.doi.org/10.1007/s10569-013-9501-z
https://arxiv.org/abs/1306.5624
https://dx.doi.org/10.1016/j.matcom.2010.11.018
https://arxiv.org/abs/1010.2609
http://adsabs.harvard.edu/abs/2011WSAAA...3..147G
https://arxiv.org/abs/1303.7398
https://dx.doi.org/10.1007/s10569-011-9375-x
https://arxiv.org/abs/1010.2617
https://arxiv.org/abs/1303.7392
https://dx.doi.org/10.1007/s10569-009-9192-7
https://arxiv.org/abs/1303.7395
https://dx.doi.org/10.13130/sansottera-marco_phd2011-02-11
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[t5] “Quasi-convexity of the Hamiltonian for non Harmonic or non Keplerian central
potentials”, naXys seminar, Namur, Belgium (2017).

[t6] “High-order control for symplectic maps”, Computational perturbative meth-
ods for Hamiltonian systems — Applications in physics and astronomy, Athens,
Greece (2016) [invited talk].

[t7] “Rigorous Results on the Relegation Algorithm and Applications via Algebraic
Manipulation”, AstroNet-II International Final Conference, Tossa de Mar, Spain
(2015) [invited talk].

[t8] “Secular dynamics of extrasolar-systems”, Complex Planetary Systems (IAU
Symposium), Namur, Belgium (2014).

[t9] “Improved convergence estimates for the Schröder-Siegel problem”, Assemblea
Scientifica G.N.F.M., Montecatini Terme, Pistoia, Italia (2014).

[t10] “Lower dimensional elliptic tori in planetary systems via normal form”,
CELMEC VI, San Martino al Cimino, Viterbo, Italia (2013).

[t11] “Effective stability around the Cassini state in the spin-orbit problem”, CELMEC
VI, San Martino al Cimino, Viterbo, Italia (2013) [e-poster].

[t12] “Non-linear oscillations and long-term evolution, application to planetary sys-
tems and spin-orbit problem”, Planetary Motions, Satellite Dynamics, and Space-
ship Orbits, CRM Montreal, Canada (2013) [invited talk].

[t13] “Secular Evolution of Extrasolar Planetary Systems: an Extension of the Laplace-
Lagrange Secular Theory”, American Astronomical Society Division on Dynam-
ical Astronomy (DDA 2013), Paraty, Brazil (2013).

[t14] “On the secular evolution of extrasolar planetary systems”, Tenth Workshop
on Interactions Between Dynamical Systems and Partial Differential Equations
(JISD2012), Barcelona, Spain (2012).

[t15] “On the secular evolution of extrasolar planetary systems”, Annual Meeting
Graduate School Complex, Bruxelles, Belgium (2012).

[t16] “Explicit Construction of Elliptic Tori for Planetary Systems”, 8th Alexander
von Humboldt Colloquium for Celestial Mechanics, Bad Hofgastein, Salzburg,
Austria (2011).

[t17] “Effective Stability of Hamiltonian Planetary Systems”, Sistemi dinamici nonlin-
eari e applicazioni, Pisa, Italy, (2011).

[t18] “Explicit Construction of Elliptic Tori for Planetary Systems”, Applications of
Computer Algebra (ACA’10), Vlora, Albania (2010).

[t19] “Explicit construction of elliptic tori for planetary systems”, Emerging Topics in
Dynamical Systems and Partial Differential Equations, Barcelona, Spain (2010)
[poster].

[t20] “Towards stability results for planetary problems with more than three bodies”,
Computer Algebra and Differential Equations (CADE 2009), Pamplona, Spain
(2009) [invited talk].

[t21] “Risultati sulla stabilità per problemi planetari con più di tre corpi”, Assemblea
Scientifica G.N.F.M, Montecatini Terme, Pistoia, Italy (2009).

[t22] “Towards stability results for planetary problems with more than three bodies”,
CELMEC V, San Martino al Cimino, Viterbo, Italia (2009).
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Research Activity

The Problems and the objectives

Werner Heisenberg once said: “. . .the progress of physics will to a large extent depend on
the progress of nonlinear mathematics and of methods to solve nonlinear equations. . .”.

Nonlinear equations are at the basis of fundamental physical phenomena, among others:

• Celestial Mechanics (n-body and spin-orbit problem);

• Hamiltonian lattices dynamical systems (chains of weakly coupled oscillators like
the Klein-Gordon (KG) and the discrete nonlinear Schrödinger (dNLS) equation);

• a-priori control of symplectic maps (e.g., particle accelerator maps).

All these problems fall into the so-called general problem of dynamics: a nearly-
integrable Hamiltonian system H(p, q) = h0(p) + εh1(p, q) with action-angle variables
(p, q) and ε small parameter. For ε = 0 the problem is integrable and the solution is
trivial: the actions of the system are conserved quantities and the motion is periodic
or quasi-periodic. Instead, in general, for ε 6= 0 the problem cannot be solved in closed
form and the system exhibits the coexistence of regular and chaotic behaviors.

Nonlinear equations are extremely difficult to solve and perturbation techniques
proved to be very effective. The major achievements of modern perturbation theory
might be seen as a generalization of periodic orbits that, as said by Poincaré, are es-
sentially the only way in which we can try to enter a place that before was considered
inaccessible. In particular the two main milestones are:

• the Kolmogorov-Arnold-Moser (KAM) theorem on the persistence of invariant
tori in nearly integrable Hamiltonian system;

• the Nekhoroshev theorem on the bounds of the actions over exponentially long
times, namely the exponential bounds of the so-called Arnold’s diffusion.

Mathematicians and Physicists have made lot of progress in these subjects in
the last decades, especially on the actual applicability of the KAM and Nekhoroshev
theories to realistic models, e.g., the giant planets of our Solar system. However, there
is still a big gap between numerical investigations and the theory that needs to be filled.
Indeed, the purely analytic results are not enough in order to get realistic estimates. The
first attempt to apply the KAM theorem to prove the stability of the Solar System was
performed by Hénon in 1965, who found that the mass ratio between Jupiter and Sun
should be smaller than 10−320. Quoting Hénon: “Thus the theorem has only a theoretical
interest and is absolutely not of practical use, at least in the presented form”.

The key remark is that a practical application of the theory to a realistic system
needs an explicit constructive algorithm that can be effectively implemented using com-
puter algebra. On the other hand, as suggested by Poincaré, the constructive method
should be based on a rigorous mathematical framework. This kind of approach (also
implementing interval arithmetic) opens a complete new field in Celestial Mechanics
and allowed some authors (among the others Calleja, Celletti, Chierchia, de la Llave,
Gabern, Giorgilli, Jorba, Locatelli, Simó) to (rigorously) prove the existence of KAM
tori for some interesting problems in Celestial Mechanics.
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In my research activity I address problems arising in different fields of Hamilto-
nian Mechanics using a common constructive perturbative approach based on normal
form theory. The key ingredients are:

• the construction of suitable invariant (or approximately invariant) manifolds;
• the use of computer algebra in order to explicitly perform the computations;
• the effective stability in the sense of Nekhoroshev.

The strongest and most difficult point of my research project is the attempt to
obtain realistic results implementing rigorous mathematical methods. In order to make
clear the differences between a theoretical and an applied result, let me stress that in a
physical problem the value of the small parameter ε is given by Nature and has a fixed
value, e.g., in the planetary problems it essentially represents the mass ratio between
the star and the biggest planet. I deal with both the theoretical and computational
aspects, with a special care on their interplay. The applications to realistic models are
obtained by translating the explicit normal form algorithms into symbolic computations
that are implemented via a specifically designed algebraic manipulator (see [18] for an
introduction to the main ideas that have been translated in our codes).

My research activity mainly concerns the following topics:
(a) Celestial Mechanics;
(c) Hamiltonian lattices dynamical systems;
(d) Maps in a neighborhood of an equilibrium.

The research results have been published in international publications and pre-
sented in international conferences. For the complete lists of the papers and talks, please
refer to the subsequent sections “Papers” and “Talks & posters”, respectively.

Original contributions

(a.1) Celestial Mechanics — secular dynamics of the giant planets of the Solar system
A productive combination of KAM and Nekhoroshev theories consists in applying the
usual, local theory for an elliptic equilibrium to the neighbourhood of an invariant
Kolmogorov torus. This is exactly the problem I tackled in my Ph.D. thesis[22]. The
results of my Ph.D. thesis have been collected in [21], [20],[19] and [17], thus [22] has
not been included in the list of the 12 selected papers (i.e., Allegato C).

In [21] we investigated the long-time stability for the Sun-Jupiter-Saturn (SJS)
system in the framework of the three-body problem. We started from a previous result
on the existence of a torus for the SJS system (see Locatelli and Giorgilli, DCDS-B, 7,
2007) based on the explicit expansion of the Hamiltonian and on the explicit application
of Kolmogorov method up to a finite, not too low order. Then we worked out a Birkhoff
normalization and showed that there is a domain of effective stability, which is centered
around an invariant KAM torus. The results were close to realistic ones.

In [17] we studied the stability of the secular evolution of the planar Sun-Jupiter-
Saturn-Uranus (SJSU) system. Our method may be considered as a major refinement of
the Lagrange theory for the secular motions. Indeed, we improved the classical circular
approximation by replacing it with a torus which is invariant up to order two in the
masses. Therefore, we investigated the stability of the elliptic equilibrium point of the
secular system for small values of the eccentricities. For the initial data corresponding
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to a real set of astronomical observations, we found an estimated stability time of 107

years, which is not extremely far from the estimated lifetime of the Solar System.

A similar approach was applied to the planar SJS system in [20], where a technical
improvement concerning the bound of a polynomial function in a poly-disk allowed us
to get a better estimated stability time.

The results obtained in the above-quoted works show that in order to better study
the long-time stability of a planetary system, one should find an approximated invariant
object that is as close as possible to the dynamics described by the system. Concerning
the planetary orbital revolutions, the classical approach consists in taking the circular
orbit as a reference. However, due to the effects of near-resonances between the planets
(e.g., Jupiter and Saturn are close the the 5:2 mean-motion resonance, the so-called
great inequality) one should replace the circular approximation with a torus that is
invariant up to order two in the masses, using a Kolmogorov-like procedure. This allows
to study the stability of the secular system for rather small values of the eccentricities.
Coming to the secular evolution, the simplest approach consists in the study of the
dynamics around the elliptic equilibrium (i.e., the Lagrange-Laplace secular theory). A
refined approach consists in replacing the elliptic equilibrium with a KAM torus, which
approximates very well the secular orbits.

The natural extension consists in looking for an invariant object that replaces
the circular approximation and the invariant torus at order two in the masses, namely
an elliptic lower dimensional invariant torus. The existence of elliptic lower dimensional
invariant tori is not a straightforward consequence of Kolmogorov’s theorem and all
available theorems (see, e.g., Pöschel, Math. Z., 202, 1989) are not suitable for explicit
calculations, even if one is interested just in finding the locations of the elliptic invariant
tori, being clever adaptations of Arnold’s proof of KAM theorem.

In [19] we devised an original semi-analytic algorithm for the construction of
lower dimensional elliptic tori in planetary systems, following the original Kolmogorov
scheme. Moreover we applied our algorithm in order to construct an elliptic torus for a
planar model of the SJSU system. Finally, by using the frequency analysis method, we
verified that our location of the initial conditions on an invariant elliptic torus was really
accurate. This semi-analytic algorithm has been supported with rigorous convergence
estimates in [14], where we gave a constructive proof of the existence of elliptic lower
dimensional tori in nearly-integrable Hamiltonian systems. In particular we adapted the
classical Kolmogorov normalization algorithm to the case of planetary systems. With
respect to previous works on the same subject we exploited the characteristic of Lie
series giving a precise control of all terms generated by our algorithm. This allowed us
to slightly relax the non-resonance conditions on the frequencies.

In [8] we investigated again the long-time stability of a planar model for the SJSU
system. In particular we improved the results in [17] by using a similar approach to the
one adopted in [21]. First, we explicitly constructed a Kolmogorov normal form, so as to
find an invariant KAM torus accurately which approximates the secular orbits. Then,
we adapted the approach at the basis of the analytic part of the Nekhoroshev’s theorem,
so as to show that there is a neighborhood of that torus for which the estimated stability
time is larger than the lifetime of the Solar System. The size of such a neighborhood,
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compared with the uncertainties of the astronomical observations, is not far from the
real physical parameters.

(a.2) Celestial Mechanics — spin-orbit problem, Titan and Mercury
Like the Moon, most of the regular satellites of the Solar System present the same face
to their planet. Cassini (1693), considering a simplified model of the rotation of the
Moon, showed how this peculiar feature corresponds to an equilibrium, called a Cassini
state. Moreover, he investigated the effects of small perturbations, namely the possible
destabilization of this equilibrium or just to the excitation of librations around it.

In [15] we investigated the long-time stability in the neighborhood of the Cassini
state in the conservative spin-orbit problem. We constructed a high-order Birkhoff nor-
mal form and gave an estimate of the effective stability time in the Nekhoroshev sense.
By extensively using algebraic manipulations on a computer, we explicitly applied our
method to the rotation of Titan, the largest moon of Saturn, that is in 1:1 spin-orbit
resonance. We obtained physical bounds of Titan’s latitudinal and longitudinal libra-
tions, finding a stability time greatly exceeding the estimated age of the Universe. In
addition, we studied the dependence of the effective stability time on three relevant
physical parameters: the orbital inclination, i, the mean precession of the ascending
node of Titan orbit, Ω̇, and the polar moment of inertia, C.

In [11] we extended our investigation to Mercury, the unique known planet that is
currently situated in a 3:2 spin-orbit resonance. Specifically, we used the same approach
adopted for the 1:1 spin-orbit case, with a peculiar attention to the role of Mercury’s
non negligible eccentricity.

(a.3) Celestial Mechanics — extrasolar planetary systems
The first confirmation of an exoplanet was made in 1995 and nowadays more than 100
multi-planetary systems have been discovered. The discovery of extrasolar planetary
systems has opened a new field in Celestial Mechanics. The study of extrasolar system
raised two particularly relevant problems: (i) most exoplanets have highly eccentric
orbits, in contrast with the almost circular orbits of the Solar System; (ii) there are
many giant planets orbiting at a low distance from the central star, with periods of
a few months or even a few days. In the latter case relativistic effects could have a
significant impact and should be taken into account.

In [16] we studied the secular evolution of several exoplanetary systems by using a
major refinement of the classical Laplace-Lagrange, i.e., an approximation at order two
in the masses. The aim of the work was to reconstruct the evolution of the eccentricities
and pericenters of the planets by using analytic techniques. Our study clearly showed
that, for systems close to a mean-motion resonance, the second order approximation
described their secular evolution much more accurately than the usually adopted first
order one. Moreover, this approach took into account the influence of the mean anoma-
lies on the secular dynamics. Furthermore, as a byproduct of the approximation at order
two in the masses, we also gave an estimate of the proximity to a mean-motion reso-
nance of the two-planet extrasolar systems discovered so far. In particular we introduce
a simple analytic criterion that allowed to discriminate between three different cate-
gories of planetary systems: secular, near mean-motion resonance and in mean-motion
resonance.
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In [12] we extended the Lagrange-Laplace secular theory to high order and also
include the main relativistic effects. Specifically, we investigated the long-term evolution
of the planetary eccentricities via normal form and we found an excellent agreement with
direct numerical integrations. Finally we set up a simple analytic criterion that allows
to evaluate the impact of the relativistic effects in the long-term evolution.

Another open problem concerns the inclinations of exoplanets. Indeed, for sys-
tems detected via radial velocity method, the inclinations are essentially unknown. In [5]
we provided estimations of the ranges of mutual inclinations that were compatible with
the long-term stability of the system. Focusing on the skeleton of an extrasolar system,
i.e., considering only the two most massive planets, we studied the Hamiltonian of the
three-body problem after the reduction of the angular momentum. Such a Hamiltonian
was expanded both in Poincaré canonical variables and in the small parameter D2,
which represents the normalized Angular Momentum Deficit. The value of the mutual
inclination was deduced from D2 and, thanks to the use of interval arithmetic, we were
able to consider open sets of initial conditions instead of single values. Looking at the
convergence radius of the Kolmogorov normal form, we developed a reverse KAM ap-
proach in order to estimate the ranges of mutual inclinations that were compatible with
the long-term stability in a KAM sense. Our method was successfully applied to the
extrasolar systems HD 141399, HD 143761 and HD 40307.

(b) Hamiltonian lattices dynamical systems
Many physical system, e.g., vibrations of molecular crystals and biomolecules including
DNA-chains, are well modeled as Hamiltonian network of weakly coupled anharmonic
oscillators. Localization is nowadays a well-known phenomenon in nonlinear lattices
and it is also known that for small enough coupling or large enough amplitude the sys-
tem admits families of periodic solutions exponentially localized in space, the so-called
breathers. The breathers were experimentally observed and explored in many physical
systems, including, among others, nonlinear magnetic meta-materials, electrical lattices,
Bose-Einstein condensates and chains of mechanical oscillators. The generalization of
the breather solution is the so-called multibreather, solutions that are localized on more
than one site of the lattice. The existing knowledge on properties and especially on
the stability of the multibreathers is limited to the small coupling limit, the so-called
anticontinuous limit, and to nondegenerate solutions.

In [7] we studied the problem of the continuation of degenerate multibreathers
solutions, obtaining the nonexistence of any asymmetric vortex solution in the one-
dimensional discrete nonlinear Schrödinger lattices. First, we exploited the presence of
a conserved quantity for the soliton profile (the so-called density current), together with
a perturbative construction, and proved the nonexistence of any asymmetric vortex
solution which is at least C2 with respect to the small coupling ε. Then, under less
restrictive assumptions, nonexistence was proved by studying the bifurcation equation
of a Lyapunov-Schmidt reduction, expanded to suitably high orders.

In [3] we studied the existence of low amplitude four-site phase-shift multi-
breathers for small values of the coupling in Klein-Gordon chains with interactions
longer than the classical nearest-neighbour ones. We focused mainly in the case of in-
teractions up to next-to-nearest neighbours, which, in the proper parameter regime, is
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equivalent to the zigzag configuration. Initially we examined the persistence conditions
of the system, in order to seek for vortex-like motions. Although this approach provided
a useful insight, due to the degeneracy of these solutions, it did not allow us to deter-
mine if they consisted true solutions of our system. In order to overcome this obstacle,
we proceeded to a deeper mathematical analysis. By means of a Lyapunov-Schmidt de-
composition we were able to establish that the bifurcation equation for our model could
be considered, in the small energy and small coupling regime, as a perturbation of the
one of a corresponding non-local discrete nonlinear Schrödinger equation.

In [6] we reconsidered the classical problem of the continuation of degenerate
periodic orbits in Hamiltonian systems. In particular we focused on periodic orbits that
arose from the breaking of a completely resonant maximal torus. We proposed a suitable
normal form construction that allowed to identify and approximate the periodic orbits
which survived to the breaking of the resonant torus. Our algorithm allowed us to treat
the continuation of approximate orbits which were at leading order degenerate, hence
not covered by classical averaging methods.

(c.1) Maps in a neighborhood of an equilibrium — the Schröder-Siegel problem

In [13] we reconsidered the Schröder-Siegel problem of conjugating an analytic map
in C in the neighborhood of a fixed point to its linear part, extending it to the case
of dimension n > 1. Assuming a condition which is equivalent to Bruno’s one on the
eigenvalues λ1, . . . , λn of the linear part we showed that the convergence radius ̺ of the
conjugating transformation satisfied ln ̺(λ) ≥ −CΓ(λ) + C′ with Γ(λ) characterizing
the eigenvalues λ, a constant C′ not depending on λ and C = 1. This improved the
previous results for n > 1, where the known proofs give C = 2 (recall that C = 1 is
known to be the optimal value for n = 1).

(c.2) Maps in a neighborhood of an equilibrium — high-order (a priori) control

In [10] we revisited the problem of introducing an a priori control for devices that can
be modeled via a symplectic map in a neighborhood of an elliptic equilibrium, e.g., a
particle accelerator. Given a symplectic map, the problem was to add a (small) non-
trivial control term such that the resulting modified map is conjugated to a rotation,
possibly a twist one. Using a technique based on Lie transform methods we produced
a normal form algorithm that avoided the usual step of interpolating the map with a
flow. The formal algorithm was completed with quantitative estimates that brought into
evidence the asymptotic character of the normal form transformation. In addition, we
discussed how control terms of different orders might be introduced so as to increase
the size of the stable domain of the map.

The relegation algorithm

In [9] we revisited the relegation algorithm introduced by Deprit et al. (CeMDA, 79,
2001). This relatively recent algorithm is nowadays widely used for implementing closed
form analytic perturbation theories, as it generalizes the classical Birkhoff normalization
algorithm. Following the usual tradition in Celestial Mechanics, the relegation algorithm
was introduced and used in a formal way, i.e. without providing any rigorous convergence
or asymptotic estimates. In this work we supported the formal algorithm with rigorous
quantitative estimates and showed how the results about stability over exponentially
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long times could be recovered in a simple and effective way, at least in the non-resonant
case.

Perturbed Central Motion
In [4] we revisited the spatial central problem with a real analytic potential, proving
that the corresponding Hamiltonian, when written in action-angle variables, was almost
everywhere quasiconvex, the only exceptions being the Keplerian and the Harmonic
potentials. We deduced a Nekhoroshev type stability result for the perturbed spatial
central motion. The case where the central system was put in interaction with a slow
system was also studied and stability over exponentially long time was proved.

Future plans

(1) Stability of some subsystems of our Solar System

(1.1) Restricted quasi-periodic problem
Several simplifications of the 3-body (and 4-body) problem have been considered

in the literature, e.g., the circular or elliptic restricted three-body problem, the bicircular
and quasi-bicircular models. We plan to introduce a restricted quasi-periodic problem
in a non-inertial frame, based on previous work on the problem of three bodies. The
idea is to exploit the fact that Sun, Jupiter and Saturn exhibits quasi-periodic motions
on invariant KAM tori very close to the real initial conditions. This will make the
Hamiltonian model much more tractable.

(1.2) Stability of the Sun-Jupiter-Saturn-Uranus-Neptune system
A fruitful combination of KAM and Nekhoroshev theory has been exploited for

the study of the effective stability of the Sun-Jupiter-Saturn and Sun-Jupiter-Saturn-
Uranus systems, see [21], [17] and [8]. These are the best available current rigorous
results. Still we plan to push beyond these achievements both concerning the estimated
effective stability time and the inclusion of Neptune into the model.

(1.3) Long-time stability around lower dimensional elliptic tori
The starting point is the explicit constructed lower dimensional elliptic torus for

the planar SJSU system, see [19] and [14]. Replacing the classical circular approxima-
tion with this invariant manifold is definitely a better starting point for a perturbative
approach. We plan to investigate the long-time stability of the SJSU system in a neigh-
borhood of the lower dimensional elliptic torus.

(2) Exoplanets Dynamics

(2.1) Accurate long-term behavior of exoplanets: 3D and MMR
Recently, jointly with Libert, we produced an accurate description of the long-

term dynamics of coplanar exoplanets that are in a 2:1 mean-motion resonance (MMR),
extending our previous work [16]. We plan to extend that achievement to any kind of
MMR, to the spatial case and to system with more than two planets.

(2.2) Determination of unknown orbital parameters via inverse KAM
Stability is a natural requirement for an analytic model consistent with obser-

vations. Indeed, there is a very low probability of detect unstable extrasolar planetary
systems. We aim at exploiting this idea: assuming that the system is stable for a long
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time, e.g., the orbits lie on a KAM torus, confine the unknown orbital parameters, e.g.,
the mutual inclination between two planets. Specifically, we intend to link possible val-
ues of the orbital parameters to the radius of convergence of the Kolmogorov normal
form. This idea was recently developed in [5], but further refinements are needed in
order to face systems with high eccentricity.

(2.3) Expansions of elliptic motion via elliptic function theory
In collaboration with Pichierri and Giorgilli, we obtained some preliminary results

concerning the expansions of elliptic motion via elliptic functions. It turns out that this
kind of expansion are convergent for any value of the eccentricity, and not narrowed by
the Laplace limit (e < 0.6627 . . .), thus they are in a much better position with respect
to the classical expansions for applications to extrasolar systems. We plan to replace
the classical expansions with these new ones based on elliptic functions. The drawbacks
are twofold: first one has to leave the Hamiltonian framework and directly works on the
differential equations, second one has to deal with non-elementary elliptic functions in
place of the usual polynomials and trigonometric polynomials. This is the price to pay,
but the benefits are far superior.

(2.4) Effective stability of extrasolar planetary systems
The stability analysis of extrasolar planetary systems represents a key ingredient

for understanding the wider question of the architecture of planetary systems. The
experience acquired studying the stability of our Solar system will guide the development
of this line of research.

(3) Hamiltonian lattices dynamical systems

(3.1) Lower dimensional tori in weakly coupled anharmonic oscillators
Recently in [6] we investigated the continuation of degenerate periodic orbits on

a completely resonant torus with respect to a small parameter, introducing an original
normal form algorithm. The normal form algorithm that we have developed represents
an excellent starting point for the extension to completely resonant lower dimensional
tori. This will allow to deal with degenerate scenarios which emerge studying discrete
solitons in one-dimensional nonlocal discrete nonlinear Schrödinger lattices and in the
investigation of vortexes in two-dimensional square lattices

(3.2) Nonlinear stability of breathers and multibreathers
The problem of stability of breathers has attracted a lot of interest since their

discovery and many studies has been devoted to their nonlinear stability. We aim to
study the effective long-time stability in a neighborhood of breathers (or multibreathers)
exploiting the constructive normal form approach previously described. Furthermore,
we intend to exploit the constructive nature of the normal forms algorithms and study
the actual long-time stability of a physically meaningful system of weakly coupled anhar-
monic oscillators, comparing the results with the observations relative to experiments
performed in many physical systems.

(3.3) Normal form at the thermodynamic limit
It is well-known that results like the KAM and the Nekhoroshev theorems stated

for finite dimensional systems appear to be somewhat useless as the number N of degrees
of freedom of the system grows. Indeed the estimated dependence on N of the constants
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involved is usually very bad, and in particular the (specific) energy thresholds do vanish
in the limit N → ∞. We plan to extend the results of Giorgilli et al. (Annales Henri
Poincaré, 16, 2015) concerning the existence of an extensive adiabatic invariant in the
thermodynamic limit in dimension greater than one.

(4) Maps in a neighborhood of an equilibrium

(4.1) Control of symplectic maps and multiturn extraction
Symplectic maps are intensively used in order to describe the nonlinear particle

motions in circular accelerators and recently a novel approach has been proposed at
CERN for performing multiturn extraction from a circular machine by using stable
resonant islands. In [10] we studied the the problem of introducing an a priori high-
order control for devices that can be modeled via a symplectic map in a neighborhood
of an elliptic equilibrium, like particle accelerators. This result goes much beyond the
usually adopted first order corrections and, in principle, it allows a lot of flexibility
depending on the type of control one is interested in. We plan to revisit that approach.
First concerning the application to realistic maps that accurately model the behavior of
particle in circular accelerators. Second, to exploit the control term in order to introduce
a wanted resonance in such a way to maximize the dynamical aperture of the islands in
connection to the multiturn extraction techniques.

(4.2) KAM theory for mappings
It is well-known that transporting the analytical methods of normal form theory

from differential equations to maps is not straightforward. Indeed most of the available
proofs of KAM theorem for nearly integrable analytic symplectic have been proved
exploiting the so-called interpolating Hamiltonian which generates the symplectic map.
A recent work by Giorgilli (Rend. Ist. Lomb., 146, 2012) solves the problem of the
representation of maps by Lie transforms. This allowed us to improve the convergence
estimates for the Schröder-Siegel problem extending the results by Yoccoz to any finite
dimensions [13]. We plan to give a direct proof of a KAM theorem for maps, without
using the classical interpolating Hamiltonian.

(4.3) Nekhoroshev theory for mappings
This part of the project make a match with the previous one. Indeed also the

available Nekhoroshev proofs make use of the interpolating Hamiltonian, with the ex-
ception of the approach designed in Guzzo (Annales Henri Poincaré, 5, 2004), which
is certainly much less suitable to implement explicit calculations, with respect to a
scheme based on Lie series/transforms. We aim to prove a Nekhoroshev theorem for
maps, without using the classical interpolating Hamiltonian.
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Additional Information

Programming languages
C, CUDA-C, FORTRAN, MPI and OpenMP.

Mathematical Packages

Mathematica, Maxima, Matlab, Octave, TEXand LATEX.

Operating Systems
GNU/Linux and Windows.

Languages
Italian (mothertongue); English (fluent); French (intermediate level).
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