

## TO MAGNIFICO RETTORE OF UNIVERSITA' DEGLI STUDI DI MILANO

**ID CODE 4326** 

I the undersigned asks to participate in the public selection, for qualifications and examinations, for the awarding of one type B fellowships at Dipartimento di Fisica, Scientist- in - charge **Prof. Nicola Manini** 

# Alexis Front CURRICULUM VITAE

#### PERSONAL INFORMATION

| Surname       | Front      |
|---------------|------------|
| Name          | Alexis     |
| Date of birth | 15/02/1990 |

### PRESENT OCCUPATION

| Appointment | Structure |
|-------------|-----------|
| none        | none      |

# **EDUCATION AND TRAINING**

| Degree                            | Course of studies                 | University               | year of achievement of the degree |
|-----------------------------------|-----------------------------------|--------------------------|-----------------------------------|
| Degree                            |                                   |                          |                                   |
| Specialization                    |                                   |                          |                                   |
| PhD                               | Condensed matter and nanosciences | Aix-Marseille university | 2018                              |
| Master                            | Condensed matter and nanosciences | Aix-Marseille university | 2015                              |
| Degree of medical specialization  |                                   |                          |                                   |
| Degree of European specialization |                                   |                          |                                   |
| Other                             |                                   |                          |                                   |



# UNIVERSITÀ DEGLI STUDI DI MILANO

#### REGISTRATION IN PROFESSIONAL ASSOCIATIONS

| D a t e<br>registration | o f | Association | City |
|-------------------------|-----|-------------|------|
|                         |     | none        |      |

#### FOREIGN LANGUAGES

| Languages | level of knowledge |
|-----------|--------------------|
| English   | B2                 |

#### AWARDS, ACKNOWLEDGEMENTS, SCHOLARSHIPS

| Year                    | Description of award                                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------|
| Mar. 2019               | Scholarship for a short-term scientific mission from international research network on nanoalloys. |
| Aug. 2016               | Scholarship to participate at condensed matter days                                                |
| Oct. 2015-<br>Oct. 2018 | Ph.D. scholarship from french ministry of higher education and research                            |

### TRAINING OR RESEARCH ACTIVITY

My thesis subject dealt with modeling of Pt-based nanoalloys including Co-Pt which is a typical ordering system and Pt-Ag which is a hybrid system between ordering and demixion. A focus on the competition between segregation and core ordering was particularly made in order to study the structure and the chemical ordering in nanoalloys.

I first developed a parametrization for interatomic potentials which is an arduous but essential step because all the results of the numerical simulations will depend on it. To achieve this goal, *ab initio* calculation techniques (DFT VASP) has to be mastered to determine data to adjust. Parametrization requires to test a very large number of parameters with a very small number of solution satisfying all the system specifications.

Then I developed new tools (in fortran) to analyse surface segregation and chemical ordering in nanoparticles. I implemented Monte Carlo simulations, using high-performance computing, to evaluate stable phases in the configuration space according to the atomic structure, morphology, composition and size of nanoparticles. These nano-objects are a condensed of metallurgy since its present inequivalent sites in interaction as surface (edge, vertex, (111) and (100) facets) and core. In order to analyse the finite size effect I developed a multi-site approach by comparing the facets behavior to the surfaces one and the bulk behavior to the core one. In the case of Pt-Ag, I implemented Molecular Dynamics to analyse stress map in several stable structures preliminary determined by Monte Carlo simulations. In addition to these results, I had the opportunity to collaborate with experimentalists and other theoreticians, leading to an article in Nature Communication.



# UNIVERSITÀ DEGLI STUDI DI MILANO

### PROJECT ACTIVITY

| Year | Project |
|------|---------|
|      | none    |

#### **PATENTS**

| Patent |  |  |
|--------|--|--|
| none   |  |  |

#### **CONGRESSES AND SEMINARS**

| Date      | Title                                                                   |                    |
|-----------|-------------------------------------------------------------------------|--------------------|
| Aug. 2018 | European Conference on Surface Science (talk)                           | Aarhus, Denmark    |
| May 2018  | International Nanoalloys Meeting (talk)                                 | Orléans, France    |
| Oct. 2017 | Nanoalloys workshop (talk)                                              | Orléans, France    |
| Jun. 2017 | Phase diagram modeling workshop (talk)                                  | Paris, France      |
| Oct. 2016 | Multiscale Materials Modeling (poster)                                  | Dijon, France      |
| Aug. 2016 | Paris International School on Advanced Computational Materials (poster) | Paris, France      |
| Aug. 2016 | Condensed matter days (talk)                                            | Bordeaux, France   |
| Jun. 2016 | Gold nanoparticles summer school (poster)                               | Cap d'Agde, France |
| Jan. 2016 | Surfaces Interfaces days (poster)                                       | Marseille, France  |

# **PUBLICATIONS**

| Books |  |
|-------|--|
| none  |  |

## Articles in reviews

J. Pirart, <u>A. Front</u>, D. Rapetti, C. Andreazza, P. Andreazza, C. Mottet, and R. Ferrando, Reversed size-dependent stabilization of ordered nanophases, Nature Comm. **10**, 1982 (2019).

<u>A. Front</u>, B. Legrand, G. Tréglia, and C. Mottet, Bidimensional phases Co-Pt surface alloys: A theoretical study of ordering and surface segregation, Surf. Sci. **679**, 128 (2019).

B. Zhu, <u>A. Front</u>, H. Guesmi, J. Creuze, B. Legrand, and C. Mottet, Magic compositions in Pd-Au nanoalloys, Comput. Theoret. Chem. **1017**, 49 (2017).



Congress proceedings

# UNIVERSITÀ DEGLI STUDI DI MILANO

| none                                                                             |
|----------------------------------------------------------------------------------|
|                                                                                  |
| OTHER INFORMATION                                                                |
| Teaching activities, 200 h                                                       |
| Solid mechanics, spring 2018                                                     |
| Second year undergraduate physics students, 14 h tutorials, 18 h practical works |
| Physics for life sciences students, spring 2017-2018                             |
| First year undergraduate life sciences students, 30 h tutorials                  |
| Electrokinetics, spring 2017                                                     |
| First year undergraduate physics students, 14 h tutorials, 6 h practical works   |

Statistical physics, spring 2016

Statistical physics, spring 2016-2018

Third year undergraduate physics students, 30 h tutorials

Third year undergraduate physics students, 30 h practical works

Training during Ph.D.

HTML, sept. 2017

Density Functional Theory: from concepts to application, course given in my lab, Marseille, France, May 2017

Python, online course by INRIA (French National Institute for Research in Computer Science), dec. 2016

Didactics of sciences, Marseille, winter 2015

Declarations given in the present curriculum must be considered released according to art. 46 and 47 of DPR n. 445/2000.

The present curriculum does not contain confidential and legal information according to art. 4, paragraph 1, points d) and e) of D.Lgs. 30.06.2003 n. 196.

Place and date: \_\_Notre Dame de Riez\_\_, \_\_\_01/09/2019\_\_\_

SIGNATURE