Statistica matematica

A.A. 2024/2025
9
Crediti massimi
93
Ore totali
SSD
MAT/06
Lingua
Italiano
Obiettivi formativi
L'obiettivo principale dell'insegnamento è di introdurre gli aspetti sia teorici che applicativi della statistica matematica univariata, con qualche cenno al caso multivariato; in particolare la prima parte del corso sarà dedicata alla statistica matematica parametrica classica, la seconda parte alla statistica matematica non parametrica classica e alla statistica parametrica Bayesiana.
Risultati apprendimento attesi
Lo studente apprenderà le nozioni ed i teoremi di base della statistica matematica che sarà poi in grado di applicare per condurre indagini statistiche; saprà individuare i metodi più appropriati per analizzare e risolvere un problema inerente gli argomenti del corso e interpretare correttamente i risultati ai fini di ottenere le risposte quantitative e qualitative appropriate per i dati in possesso.
Corso singolo

Questo insegnamento può essere seguito come corso singolo.

Programma e organizzazione didattica

Edizione unica

Responsabile
Periodo
Primo semestre

Prerequisiti
Un corso introduttivo di Probabilità
Modalità di verifica dell’apprendimento e criteri di valutazione
L'esame consiste di una prova scritta e di una prova orale.

- Nella prova scritta verranno assegnati alcuni esercizi a risposta aperta atti a verificare la capacità di risolvere problemi di analisi statistica, sia per la Parte 1 da 6cfu, che per la Parte 2 da 3cfu.
Il voto della prova scritta è in trentesimi e per l'esame dei 9cfu sarà dato dalla media pesata dei voti ottenuti nelle due parti distinte.
- La durata della prova scritta è commisurata al numero e alla struttura degli esercizi assegnati, ma non supererà comunque le tre ore.
Per gli studenti che sosterranno l'esame completo da 9cfu sono previste 2 prove intermedie che sostituiscono la prova scritta del primo o del secondo appello.
Non sono previste prove intermedie per chi sostiene solo la Parte 1 da 6cfu.
Gli esiti delle prove scritte e delle prove intermedie verranno comunicate sul SIFA attraverso il portale UNIMIA.

- Alla prova orale accedono solo gli studenti che hanno superato la prova scritta dello stesso appello d'esame (oppure le prove intermedie, per gli appelli di Gennaio e Febbraio). Durante la prova orale verrà richiesto di illustrare alcuni risultati del programma dell'insegnamento, al fine di valutare le conoscenze e la comprensione degli argomenti trattati, nonché la capacità di saperli applicare.

L'esame si intende superato se vengono superate la prova scritta e la prova orale.
Il voto è espresso in trentesimi e verrà comunicato immediatamente al termine della prova orale.
Statistica Matematica (prima parte)
Programma
1. Campioni e modelli statistici. La famiglia esponenziale.
2. Proprietà degli stimatori: consistenza, non distorsione, asintotica normalità.
3. Metodi per la ricerca di stimatori.
4. Il processo di Poisson omogeneo: proprietà ed inferenza.
5. Intervalli di fiducia.
6. Verifica di ipotesi statistiche.
6.1. Potenza di un test e test UMP.
6.2. Il Lemma di Neyman-Pearson.
6.3. Rapporto di massima verosimiglianza.
6.4. Test parametrici classici.
7. Regressione lineare semplice.
8. Altre proprietà degli stimatori.
8.1. Sufficienza.
8.2. Completezza.
8.3. Metodi di riduzione della varianza: i teoremi di Rao-Blackwell e Lehmann-Scheffe'.
8.4. Il teorema di Cramer-Rao.
8.5. Efficienza ed informazione di Fisher.
9. Proprietà degli stimatori di massima verosimiglianza.
Metodi didattici
Lezione frontale sia per la parte di teoria che di esercitazioni.
Materiale di riferimento
1. G. Casella and R.L. Berger, Statistical Inference. Second edition (2001)
2. J. Shao, Mathematical statistics. Second edition (2003)

Verrano inoltre fornite dispense dai docenti.
Statistica Matematica (seconda parte)
Programma
10. Elementi di statistica non parametrica.
10.1. Inferenza sulla funzione cumulativa: la statistica di Kolmogorov, Teorema di Glivenko-Cantelli.
10.2. Test di ipotesi sulla cumulativa continua: Test di Kolmogorov-Smirnov. e Kolmogorov-Lilliefors.
10.3. Inferenza sulla distribuzione nel caso generale: la statistica di Pearson.
10.4. Test chi-quadro di adattamento per la bontà del fit.
10.5. Test chi-quadro per l'indipendenza.
11. Elementi di statistica Bayesiana parametrica.
11.1. Distribuzioni a priori e a posteriori.
11.2. Famiglie coniugate.
11.3. Stimatori Bayesiani.
11.4. Intervalli di credibilità e test Bayesiani (cenni).
11.5. Scambiabilità e teorema di De Finetti.
Metodi didattici
Lezione frontale per la parte di teoria e di esercitazioni.
Materiale di riferimento
1. G. Casella and R.L. Berger, Statistical Inference. Second edition (2001)
2. J. Shao, Mathematical statistics. Second edition (2003)
3. P. Hoff. A first course in Bayesian statistical methods, Springer, New York, (2009)
4. J.M. Bernaro, A.F.M. Smith, Bayesian theory, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester (1994)

Verrano inoltre fornite dispense dai docenti.
Moduli o unità didattiche
Statistica Matematica (prima parte)
MAT/06 - PROBABILITA' E STATISTICA MATEMATICA - CFU: 6
Esercitazioni: 36 ore
Lezioni: 27 ore

Statistica Matematica (seconda parte)
MAT/06 - PROBABILITA' E STATISTICA MATEMATICA - CFU: 3
Esercitazioni: 12 ore
Lezioni: 18 ore

Docente/i
Ricevimento:
Lunedì 10:30-13:30 (con preavviso, salvo impegni accademici)
Dipartimento di Matematica, via Saldini 50, studio 1017.
Ricevimento:
Su appuntamento
Dipartimento di Matematica, via C.Saldini 50, ufficio 2095